
MODEL 250

DATA ACQUISITION AND

SIGNAL PROCESSING BOARD

FOR THE IBM PC AT AND ISA BUS COMPATIBLES

Dalanco Spry
89 Winslow Avenue
Rochester, NY 14620
U.S.A.

(716) 473-3610

Copyright (c) 1990 Dalanco Spry

TABLE OF CONTENTS

1. Introduction

2. Installation - Basic, One time
2.A. Software Backup
2.B. IO Addressing
2.C. Program RAM size
2.D. EPROM DSP in Stand Alone Mode
2.E. Interrupt Jumper Settings

3. Operation Example

4. Hardware Features with Examples
4.A. Timer
4.B. Memory
4.C. Set TMS320C25 Operation
4.D. Reset TMS320C25 Operation
4.E. Interrupts

4.E.1. Model 250 Interrupt Sources
4.E.2. Model 250 interrupts the PC

4.F. IO connectors
4.G. EPROM Based TMS320E25 Usage
4.H. The Latch

5. D325 - The Debugger

6. A320 - The Assembler

7. Linking to High Level Languages

8. A/D and D/A Converters

9. FFT Software

10. DISPLAY - Time and Frequency Spectrum Domain Signal Display

11. Data Transfer Programs
11.A RECORD to Disk
11.B PLAYBACK from Disk
11.C EDIT25 Waveform Editor
11.D DELAY Digital Delay

12. Digital Filter Implementation - GEN250 Code Generator

Appendix A. Model 250 IO Assignments
Host IO Assignments

Appendix B. Assembly Language Summary

References

Table of Contents

1. INTRODUCTION

This manual is the reference to the Model 250 Digital Signal
Processor Board and its accompanying software. The reference for
the Texas Instruments TMS320C25 Digital Signal Processor and its
assembly language is the Second Generation TMS320 User’s Guide
available from TI.

Partial List of References

1. Second Generation TMS320 User’s Guide , Reference no.
SPRUO14A

2. TMS320 Development Support Reference Guide, Ref no. SPRU007A
3. Digital Signal Processing Applications with the TMS320 Family,

Ref no. SPRA012

2. INSTALLATION

A. Make a backup working copy of the software.
Please see your DOS manual if you have any questions on the use of
the COPY command.

B. Set the address jumpers for the IO mapping.

These jumpers determine the Base IO addressing at which the Model
250 resides in the host CPU’s IO address space. (The host CPU is
the IBM PC AT, etc.). This address should not conflict with
existing functions or adapters in the PC system. (The h appended
to a number indicates that the number is written in hexadecimal, or
base 16 notation. The ’0x’ prefix, used in C programs, and the ’>’
prefix, used in the Dalanco assembler and debugger, are equivalent
hexadecimal notations). The address setting is located at J7 on the
lower right side of the board. The 7 jumpers are read right to left
(most significant bit to least significant), and determine the 8
byte block of IO addresses used to control the board. Only bits 3
thru 9 of the address are selectable. The upper bits (bits 10-11)
are forced to represen t a 0 while bits 0-2 are also zero. Thus
shorting the jumpers as in Fig. 1 yields 3OOh as the Base IO
address. This is the default address to be used on the majority of
IBM PC systems. A jumpered connection corresponds to a bit set to
zero and no jumper to a bit set to one .

Table of Contents

The Base IO address is selectable on 8 byte boundaries.

Note that in systems with multiple Model 250 boards, each Model 250
must be addressed at its own unique Base IO address.

Examples

For the Base IO address of 300h, bits 3-9 are 1100000.
3 | 0

The correct jumper configuration is

0 0 0 0 0 1 1
_ _ _ _ _

|o||o||o||o||o| o o
|o ||o ||o ||o ||o | o o

Fig. 1
A3 A9

Example for Base IO address 310h:

0 1 0 0 0 1 1
_ _ _ _

|o| o |o||o||o| o o
|o | o |o ||o ||o | o o

Fig. 1a

Installation 2.^N

OTHER SETTINGS

C. Program RAM Size

The Model 250 may be fitted with either 4K or 64K words of Program
RAM. The Program RAM resides in the four ICs directly above the
TMS320.

Case 1:
4K words of RAM. The RAM ICs are Cypress CY7C169 or

equivalent. They must be mounted as shown, occupying the rightmost
20 pins of the 24 pin sockets. Jumper J2 is set to the ’4’
position.

Case 2:
64K words of RAM. The RAM ICs are Hitachi 6708 or

equivalent. Jumper J2 is set to the ’64’ position.

D. EPROM DSP in Stand Alone Mode

Jumper J0 is set to the C (for computer) position when the Model
250 is equipped with a TMS320E25 preprogrammed to operate in
standalone mode.
Otherwise set J0 to the default ’P’ (for processor) position,
whether using the TMS320C25 or TMS320E25 DSPs.

E. Interrupt Jumper Settings

Jumper JI1 is used to implement one of the following PC interrupts:

INT10, INT11, INT12, or INT15.

Only one connection should be made.

JI2 is jumpered if either INT3 or INT5 are desired. Jumpers JI1 and
JI2 cannot both be jumpered. Only one of the connections may be
made.

Installation 2.^N

3. OPERATION EXAMPLE

The best way to become familiar with the Model 250 is to use D325,
the monitor program. We will use it to:

1) Display Program memory
2) Write a short program using the Assemble and Substitute

commands.
3) Disassemble the program to make sure it is correct.
4) Save the program on disk.
5) Fill memory with a constant.
6) Read the program from disk.
7) Run the program.
8) Halt the program.
9) Display the result.

Note: In the discussion below, <cr> indicates a carriage return.

Invoke D325 :
Type D325 at the MS-DOS prompt. A dash (-) appears as the new
prompt.

Display memory :
To display the first 1OOh words of Program memory (0 to ffh), type

- dp0,ff<cr>

Note that the addressing points to 16 bit words, not 8 bit bytes.

Write a short program :
To assemble an instruction at location 0, type

- a0<cr>

The address 0 appears and D325 awaits your entry. Type

b 7 (branch to address 7).

Note: If D325 responds with ???, you made an entry error. Reenter
the instruction. After successful assembly D325 provides the next
address (in this example, 2) and waits for your entry. If you don’t
want to enter anything at that address, press <cr> to move to the
following address. If you want to get out of Assemble mode enter,
type

.<cr>

The dash (-) prompt reappears.

Operation Example 3.^N

We will continue our program at address 7, so type

- a7<cr>

Then enter the rest of the program

7 DINT
8 LDPK 4
9 LACK 80
A TBLR 0
B LACK 81
C TBLW 0
D B >D
F . <cr>

The assembler displays the object code corresponding to each
instruction.

Using the Substitute command, let’s enter data at location 50h.

- sp50<cr>
0050 ABCD-1234 .<cr>

Here we are entering the number 1234h at location 5Oh .

Disassemble the program :
The following command disassembles the statement at location 0.

- u0

Continue to press <cr> to disassemble subsequent instructions.
Correct any errors using the Assemble or Substitute commands.

Save the program on disk :
We will now write the Model 250 Program memory space (4K words) to
disk. Make sure that you have 8 kbytes of free space on that disk.

- wb:myprog<cr>

In this example the program is written to the b: disk drive.

Operation Example 3.^N

Fill Program memory with a constant :
Enter the Fill command and D325 responds with three questions. In
the example below, we are filling all of memory with zeroes.

- fp<cr>
Enter constant? 0<cr>
Starting Address? 0<cr>
Number of Locations to fill? 4096<cr>

Read the program from disk :
Since this program is short we read in only the first 60h words.

- rb:myprog
Starting Address? 0
Ending Address (<=FFF)? 60

Run the program :
Enter the Go command to run your program.

- g<cr>

Halt the program :
Enter the Halt command to stop your program.

- h<cr>

Display the result :
Now use the Display command to see if the program performed as
expected. Did the contents of RAM location 80 (50h) get copied into
location 81 (51h) ?

Operation Example 3.^N

4. HARDWARE FEATURES

A. Timer

The timer consists of two 8 bit counters connected in cascade. Each
of the two 8 bit counters is associated with its own divisor. The
divisor determines the output frequency of the counter as a
function of its input frequency. If, for example, the input
frequency to a counter is 1 Mhz, and the counter is programmed with
a divisor of 4, then the output frequency will be 250 Khz.

The Model 250 Timer diagram:
___________ __________

| Counter 1 | | Counter 2|
4 Mhz ----->| div1 |-------->| div2 |---> OUTPUT CLOCK

|___________| |__________|

OUTPUT CLOCK FREQUENCY = 4 Mhz
div1 * div2

div1 and div2 may be in the range (0< <255).

Once div1 and div2 are determined, subtract each of them from 255
(0FFh), and form a single 16 bit value.

time1 = 255 - div1
time2 = 255 - div2
TheValue = time1time2

The TMS320 writes TheValue to Port 0 to set the Timer.

Example:
We need a clock value of 100 Khz (divisor of 4 Mhz/100

Khz = 40). We can then choose div1 = 40, div2 = 1.
Then

time1 = 255 - 40 = 215 = 0D7h
time2 = 255 - 1 = 254 = 0FEh

The TMS320 then writes 0D7FEh (or 0FED7h) to Port 0 to set the
Timer output to 100 Khz.

We could also have chosen div1 = 20, div 2 = 2 or another
combination to achieve the same result.

Hardware Features 4.^N

Programming the Timer

To program the timer, you may use the D325 O command, or write a
subroutine as part of your TMS320 assembly language program.
Assembly language examples may be found on the distribution
diskette.

B. Memory Access

outword(302h,400h) ; set addr. to location 400h in Data memory
outword(302h,401h) ; set addr. to location 400h in Program

memory
outword(302h,402h) ; set addr. to loc. 400h in Data memory Bank

2
outword(302h,403h) ; set addr. to loc. 400h in Program memory

The next step is to access the actual data. The data is read
from or written to address Base IO using 16 bit IO instructions.

These assume a Base IO address of 300h. Therefore the
port_value is 300h. Our pseudo-language IO instructions are of the
form:

write:
outword(port_value, data_value);

read:
data_value = inword(port_value);

Examples:
1) Assume address ctr. has been set to 400h in Data memory

outword(300h,1234h) ; write 1234h to Data location 400h
2) Assume address ctr. has been set to 400h in Program memory

data_value_at_400h = inword(300h) ; read from Pgm location
400h

After each memory access the address counter is incremented. A
string of data may thus be read or written with only one address
’setup’.

Example:
Assume address ctr. has been set to 400h in Data memory
data_value_at_400h = inword(300h) ; read Data loc. 400h
data_value_at_401h = inword(300h) ; read Data loc. 401h
data_value_at_402h = inword(300h) ; read Data loc. 402h

Note:
The above example shows how to reach an address value which is

not modulo 4. To reach 403h, ’go to’ 400h and read 3 times.

The auto increment feature results in very fast data transfers
across the PC/AT bus, particularly when using the 80286/80386 REP
INSW and REP OUTSW assembly language instructions. See the sendio
and recvio functions.

The PC may access the Program RAM only when the the TMS320 is in
the RESET (not running) condition.

Hardware Features 4.^N

Both the PC and the TMS320 may access the Data RAM at any time.
They may thus communicate or pass large strings of data through the
Data RAM.

An Example:

TMS320 writes the contents of the lower accumulator half to
location 410h in Data memory:

lrlk 1,>410 ; set auxiliary register 1 to >410
larp 1 ; activate auxiliary register 1
sacl * ; write to Data RAM loc. >410

PC reads location 410h in Data memory (Model 250 mapped at
300h):

mov dx,302h ; set address
mov ax,410h ;
out dx,ax ; output address value
mov dx,300h ;
in ax,dx ; read data value from RAM

or, in Turbo C:
outport(0x302,0x412);
data_value = inport(0x300);

C. Start TMS32OC25 Operation
The 80_86 instruction to begin TMS32OC25 execution is a byte input
at (Base IO address + 6). Our example shows a system with Base IO
address at 3OOh.

Assembly Language: MOV DX,3O6h
IN AL,DX

BASIC: INP(&H3O6)
Debug: i3O6
Turbo C: inportb(0x306);

D. Halt TMS32OC25 Operation
The 80_86 instruction to halt TMS32OC25 execution is a byte input
at (Base IO address + 7). Our example shows a system with the Base
IO address at 3OOh.

Assembly Language: MOV DX,3O7h
IN AL,DX

BASIC: INP(&H3O7)
Debug: i3O7
Turbo C: inportb(0x307);

Hardware Features 4.^N

E. Interrupts

E.1 The host toggles the INT pin on the TMS32OC25
The 8O_86 instruction to send an INT2 interrupt to the TMS32OC25
(to set the INT2 pin on the TMS32OC25 to LOW) is a byte input at
(Base IO address + 5).

Our example shows a system with the Base IO address at 3OOh.

Assembly Language: MOV DX,3O5h
IN AL,DX

BASIC: INP(&H3O5)
Debug: i305
Turbo C: inportb(0x305);

E.2 Model 250 Interrupt to the host PC’s CPU
The Host CPU may be interrupted by the Model 250. In
this way the TMS32OC25 may tell the PC that it has completed a
computation or that it has some data to pass to the PC.

From the TMS320C25 point of view, the operation is quite simple. An
input instruction at port 1 will, depending on the setting of
jumpers JI1 and JI2 , send one of the following hardware interrupts
to the host PC.

INT10
INT11
INT12
INT15
INT3
INT5

The host must, however, be prepared to receive the interrupt. The
following steps must be taken:

1) The address of the Interrupt Service Routine (ISR) (the routine
that you write to tell the processor what to do in case of an
interrupt) must be placed in the Interrupt Routine Table. This
table is located at the very beginning of memory in segment 0. The
DOS manual suggests the use of DOS function call 25h to accomplish
this end.

Hardware Features 4.^N

2) The Interrupt Mask Register (IMR) must be modified to accept the
hardware INT signal. To enable an interrupt, its corresponding bit
is set to zero .

3) The Interrupt Driver on the Model 250 must be removed from the
Tri-State condition. This is done with a BYTE Write to Port (Base
IO + 4). It can be returned to the Tri-State condition with a BYTE
write to Port (Base IO + 5).

TSR250-10.C on the distribution diskette illustrates the setup and
use of hardware interrupt 10. The host PC will beep upon receipt of
an interrupt 10 from the Model 250. The interrupt may be generated
from within D325 with the i1 (Input from Port 1) command. Make sure
that JI1 is jumpered in the ’INT10’ position and that JI2 is NOT
jumpered.

E.3 Polling
In this practice, the host PC polls the memory location (see 4.B.1
or 4.B.3) and takes action (or keeps on polling) according to the
value that it receives.

Example TMS320C25 Code

larp 1
lrlk 1,>400
lack 73 ; send a ’73’ to location
sacl *; 400h in Data RAM

.

.
DO FFT HERE

.
larp 1
lack 88 ; send an ’88’ to location
sacl * ; 400h in Data RAM

In this case the host would poll location 400H in Data RAM as shown
in 4.B.1 and would know by the value received (either a 73 or an
88) that an FFT calculation was either in progress or had been
completed.

Hardware Features 4.^N

F. The IO Connectors

The external 37 PIN connector is configured as follows:

GND o
o INPUT CHANNEL 5

GND o
o INPUT CHANNEL 4

GND o
o INPUT CHANNEL 6

GND o
o INPUT CHANNEL 7

GND o
o INPUT CHANNEL 3

GND o
o INPUT CHANNEL 2

GND o
o INPUT CHANNEL 1

GND o
o INPUT CHANNEL 0

GND o
o

o
o

o
o

GND o
o OUTPUT CHANNEL 0

GND o
o OUTPUT CHANNEL 1

GND o
o

o
o

o
o SERIAL PORT FSR

SERIAL PORT DR o
o SERIAL PORT CLKR

SERIAL PORT CLKX o
o SERIAL PORT DX

SERIAL PORT FSX o

Hardware Features 4.^N

J3 is the digital logic connector.

D15 o o GND
D14 o o GND
D13 o o GND
D12 o o GND
D11 o o GND

J3 Connector D10 o o GND
D9 o o GND
D8 o o GND
A2 o o GND
A3 o o GND
A0 o o GND
A1 o o GND

D7 o o GND
D6 o o GND
D5 o o GND
D4 o o GND
D3 o o GND
D2 o o GND
D1 o o GND
D0 o o GND

WAIT o o -BRW
EXINT o o

-BSTRB o o
EXBIO o o RATE

-BIS o o RATE

(O) means that the signal is an OUTPUT from the Model 250.
(I) means that the signal travels from the external module INTO

the Model 250.
(IO) means that the signal is bi-directional.

D0-D15 (IO) is the TMS320C25’s buffered 16 bit data bus
A0-A3 (O) are the TMS320C25 buffered address lines 0-3
EXINT (I) is the active low INT0 interrupt to the Model 250 EXBIO
(I) is the active low BIO interrupt to the Model 250

RATE (O) is the output of the Model 250’s programmable Timer
-BRW (O) is buffered TMS320 -RW Control Signal
-BIS (O) is buffered TMS320 -IS Control Signal
-BSTRB (O) is buffered TMS320 -STRB Control Signal
WAIT (I) used to insert Wait states in the TMS320 instruction

cycle.

Hardware Features 4.^N

G. TMS320E25 Operation

The TMS320E25 is similar to the TMS320C25, with the exception that
it provides for 4K words of EPROM on chip. The programmed code may
be secured, and secured code may be later erased but not read. The
4K words is used as Program space and is mapped at Program RAM
locations 0 to FFFh . The TMS320E25 is programmed with a standard
EPROM programmer capable of programming the 27C64 EPROM (21 Volt
Programming voltage). An EPROM to TMS320E25 adapter is required.
A TMS320E25 equipped Model 250 may be operated in 3 different ways.

1) Microprocessor Mode
Set J0 to the ’P’ (processor) position.
Operates just like a TMS320C25 and accesses external RAM in the 0-
FFFh range upon being SET. The TMS320E25 may toggle itself to
access its onboard EPROM by toggling the XF pin and then jumping to
the desired location in the 0-FFFh Program space. Of course, the
EPROM will have to have been previously programmed.

2) Computer Mode 1
Set J0 to the ’C’ (computer) position.
When the PC is turned on and after the Model 250 is SET, the
TMS320E25 will begin execution at location 0 in its EPROM space.
Locations 0-FFFh in external Program RAM are not used.

3) Computer Mode 2
Set J0 to the ’C’ (computer) position.
When power is turned on, the TMS320E25 will begin execution at
location 0 in its EPROM space. Locations 0-FFFh in external Program
RAM are not used. This mode enables the Model 250 to be used in
standalone mode on backplane systems supplying only power and the
PC Reset signal. This mode requires a PAL change at U14.

Hardware Features 4.^N

H. The Latch

The TMS320 controls the following Model 250 parameters by writing
to a latch mapped at port 1 in its IO space.

a. The next A/D input channel to be sampled.
b. The next D/A channel to be written to.
c. The 64K Data RAM segment to be accessed when

the total Data RAM space is 128K words.

Format

bit4 | bit3 | bit2 | bit1 | bit0 |
Bank | D/A | muxa2 | muxa1 | muxa0 |
Select | Select | | | |

where
Bank Select = 0 for Data RAM Bank 0 (0-ffffh)[0-64K words]

= 1 for Data RAM Bank 1 (10000h-1ffffh)[64-128K]

D/A Select = 0 D/A Channel 0
= 1 D/A Channel 1

Bits 0-2 select the Input Channel value, which ranges from 0 to 7.

Example Using D325:

-o17,1 ; select A/D channel 7, Data RAM Bank 1,
D/A channel 0

Hardware Features 4.^N

5. D325 DEBUGGER

D325, the debugger, is the basic tool for ’manually’ controlling
the Model 250 board. The commands are explained below:

A - Assemble
The A command places TMS320C25 instructions into Program memory one
line at a time. As each line is assembled, its corresponding object
code is displayed on the screen. Hexadecimal numbers are preceded
by a ’>’ and are often used for program memory references.

- Ab90 <cr>
B90 b >7b4 <cr> ; hex - Program memory address
B92 lack 17 <cr> ; decimal - Constant
B93 sacl 22 <cr> ; decimal - Data memory address

Press <cr> to assemble the next instruction. D325 displays the
assembled object code. Exit by entering a dot (.) followed by <cr>.

B - Bank Select
The B command selects the Data RAM bank (0 for the first 64K words
or 1 for the second 64K words) for use in subsequent commands
involving Data RAM. Used only with boards populated with 128K words
of Data RAM.

C - Convert
The C command converts numbers in decimal notation to hexadecimal,
and vice versa.

- CH60<cr> converts the dec. number 60 to its
hex equivalent.

- CD5b<cr> converts the hex number 5B to its
decimal equivalent.

D - Display
The D command displays Program or Data memory in hexadecimal
notation. Syntax: D{p|d}address1,address2 where address2 is
greater than address1.

- DD54,110<cr>

displays all Data memory locations between 54h and 110h.

- DP12a,170<cr>

displays all Program memory locations between 12Ah and 170h.

D325 Debugger 5.^N

To pause the display, enter <Cntrl-s>.
To terminate the display prematurely, enter <ESC>.

F - Fill
The F command fills a portion of Program or Data memory with a 16
bit constant. The user is in turn prompted for the constant in
hexadecimal notation, the first address at which the constant is to
be placed, and the number of memory locations to be filled.

- Fd Enter constant in hex ? 200 <cr>
Starting Address in hex ? BCD <cr>
Number of Locations to Fill ? 300 <cr>

This example fills the 300 locations in Data memory starting at
BCDh with 200h.

G - Go
The G command sets the TMS320C25 set/reset pin, thus setting the
processor into operation.
a) No Breakpoint Operation.

- g<cr>
The TMS320C25 is set into operation and continues to run until the
Halt command is issued.

b) Breakpoint
- g,breakpoint address<cr>

The TMS320C25 is set into operation and continues to run until the
breakpoint address is reached or a timeout occurs. The TMS320C25 is
then reset (halted) and the program counter is set back to zero.
Then D325 will display the TMS320C25 status and registers, and
optionally, one of the TMS320C25 Data Memory pages. The page to be
displayed will have been set with the P command.

Note: To use the breakpoint option,
Program Memory between F00h and FFFh be available for use by D325,
that is, not used by the applications program under examination.

H - Halt
The Halt command resets the TMS320C25 set/reset pin. This halts
TMS320C25 operation.

- h<cr>

D325 Debugger 5.^N

I - Input
The Input command causes the TMS320C25 to input a 16 bit word from
the designated port (0-15) and then displays the word on the
screen.

- i5<cr>
received A325h from port 5

L - Log
The L (log) command is used to log in boards which are not
addressed at the default setting. Otherwise the default setting is
assumed and the L command is not needed. All subsequent commands
such as G (go) and H (halt) then refer to the logged on board. This
permits the controlling of several Model 250 boards from within a
single session of the D325 program.

M - Move
The Move command moves data from one block of program memory (the
source) to another (the destination). D325 prompts the user for the
start and end addresses of the source block and the beginning
address of the destination block.

O - Output
The Output command causes the TMS320C25 to output a 16 bit word to
the designated port (0-15).

- oA531,7<cr> outputs A531h to port 7

P - Page
Selects the page in Data Memory to be displayed upon reaching the
breakpoint. See the G command description.

- p4 to display page 4

Q - Quit
Used to exit the D325 program.

R - Read from Disk
This command reads the contents of a binary file into the TMS320C25
Program Memory. The user is prompted for the start and end
addresses. In this way data and procedures from different files may
be ’spliced’ together in Program Memory.

- rb:crypto.bin<cr>
Start Address (0 <= < FFF) ? 0 <cr>
End Address (Start < <=FFF) ? FFF <cr>

reads the file b:crypto.bin into Program Memory.

D325 Debugger 5.^N

S - Substitute
The Substitute command allows the replacement of the 16 bit word at
each Program or Data memory location.

- sp556<cr>
556 A321- 8000<cr>
557 A098- .<cr>

In the above example the user has replaced the word at address 556h
in Program memory with 8000h. Enter <cr> to modify the next memory
location. Exit by entering a dot (.) followed by <cr>.

U - Unassemble
This command dissassembles program memory contents into their
TMS320C25 instruction codes one line at a time. Enter <cr> to
dissassemble the next memory location. Exit by entering a dot (.)
followed by <cr>.

- u5<cr>
5 ZAC <cr>
6 B F00 <cr>
8 LARP 0 . <cr>

-

V - View
The View command continously scans the desired range of Data RAM.
In this way one may examine ares of Data RAM during Model 250
operation. Input syntax is similar to Display .

- v400,41f<cr>

W - Write to Disk
This command writes the contents of TMS320C25 Program Memory to
disk.

- wa:fft.bin<cr>
writes Program Memory contents to a:fft.bin

X - Read TI hexfile from disk
This command reads the contents of a Texas Instruments format hex
file into the TMS320C25 Program Memory. This allows programs
written on the Texas Instruments Assembler to be run directly on
the Model 250.

- xb:fft.hex<cr>

D325 Debugger 5.^N

6. A320 ASSEMBLER

A320 is the assembler for all Dalanco TI based DSP products. It
features support for the TMS32010, TMS32020, and TMS320C25, and
will automatically load binary files into the Model 250. It is also
very fast. The assembly rate is approximately 1000 lines/second on
AT class computers.

The Command line

a320/<output mode> infile

The output mode can be:
d direct -- program is loaded to MODEL 250, no file

produced
b binary -- this is compatible with D325 R command
h hex -- Tektronics hex format

The default output mode is d.

If the output mode is b, a .BIN file is generated.
If the output mode is h, a .HEX file is generated.

Instructions

Label ;comment
Label: ;comment

Opcode Operand ;comment
Label Opcode Operand ;comment
Label: Opcode Operand ;comment

Opcodes MUST be in lower case. Labels can be upper and lower
case. They are case-sensitive.

Directives

aorg <position pointer>

Changes the current (program or data) position pointer to the
one specified.

Example:

aorg >10

A320 Assembler 6.^N

bss <number of words>

Advances the current position pointer by the specified number of
words.

Example:

One bss 2

data <data word>,<data word>, etc...

Stores the data word. Note that this only works in program
memory. It is useful for storing things like sine tables, etc.,
that will be read with TBLR instructions.

Example:

SinTab data >0,>324,>646,>964,>C7C,>F8D,>1294,>1590

dseg

Starts data segment. This is primarily useful for bss
declarations of variables used. Use dend to return to program
memory. Labels defined within dseg cannot be used as program
labels, and program memory labels cannot be used for data memory.
You may consider using equ $ for labels that can be used for more
applications.

Example:

dseg
One bss 1

dend

end

Ends assembly, no further instructions are recognized. This
directive is not necessary if the file ends in a blank line.

Example:

end

A320 Assembler 6.^N

equ

Equates a label to an expression. The expression can be $,
which indicates the current position pointer

Example:

Here equ $

go

If the output mode is direct to DSP, go causes the DSP to start
the program.

Example:

go

tms { 32010 | 32020 | 320c25 }

This specifies the instruction set to be used. The instruction
set code may be abbreviated: 10, 20 or 25. The default is 320c25.

Example:

tms 25

iobase <Base IO value>
This specifies the base IO address to be used. This number is

divisible by 8 and is between >100 and >3ff. The choice of Base IO
address must agree with the IO jumper settings on the Model 250.
The default value is >300.

Example:
iobase >310

**

A320 Assembler 6.^N

Example program

; Sample Program - A/D to D/A Pass Thru
; This Program reads from the A/D converter and then
; writes the value to the D/A converter at the programmed
; Sample Rate.
;
; Model 250 Equates
ADPort equ 2 ; M250 A/D Port
DAPort equ 3 ; M250 D/A Port
TimerPt equ 0 ; M250 Timer Port
LatchPt equ 1 ; M250 Latch Port
IntMask equ 2 ; = 2 for INT1
AckPt equ 0 ; M250 Int. Acknowledge Port
DAC0 equ 0 ; DAC 0 latch value {Bi t 3 = 0}
DAC1 equ >8 ; DAC 1 latch value {Bi t 3 = 1}
CHAN0 equ 0 ; A/D channel 0
CHAN1 equ 1 ; A/D Channel 1
CHAN2 equ 2 ; A/D channel 2
CHAN3 equ 3 ; A/D Channel 3
CHAN4 equ 4 ; A/D channel 4
CHAN5 equ 5 ; A/D Channel 5
CHAN6 equ 6 ; A/D channel 6
CHAN7 equ 7 ; A/D Channel 7
T10KHZ equ >f5d7 ; Timer Value for 10 Khz Sampling Rate
T100KHZ equ >f5fb ; " " " 100 Khz Sampling Rate
T200KHZ equ >f5fd ; " " " 200 Khz Sampling Rate

dseg ; Data Segment Locations
aorg >0

Zero bss 1
One bss 1
Sample bss 1
Num bss 1
LatchVal bss 1
TimerVal bss 1

dend

A320 Assembler 6.^N

aorg 0 ; Beginning of Program Memory
b Start

aorg >4
b HaveSamp ; ISR for INT 1

aorg >10
Start: ; Initialize Hardware

dint
ldpk 0 ; Set up
lack IntMask ; Interrupt Mask
sacl 4
ldpk 4
zac
sacl Zero
lalk T200KHZ ; Set Sampling Rate
sacl TimerVal
out TimerVal,TimerPt
lack 1
sacl One
lack CHAN5 ; select next A/D Channel
ork DAC0 ; select next DAC Channel
sacl LatchVal
out LatchVal,LatchPt ; Output selections to Latch
eint ; Enable Interrupt

GetSamp: ; Wait for Interrupt
b GetSamp

HaveSamp: ; Interrupt Service Routine
in Sample,ADPort
out Sample,DAPort
eint
ret

go ; Start this program

end ; End of Code

A320 Assembler 6.^N

7. LINK PACKAGE

This section describes the utility functions for controlling the
Model 250 that are linkable to the user’s software. It should be
noted that the user can also write his own functions for
controlling the Model 250. The necessary Model 250 information is
in Chapter 4 of this manual.

int320(BASEIO)
BASEIO - Base IO Address of Model 250

Sends an INT2 interrupt to the TMS320C25 on the Model 250.

go320(BASEIO)
BASEIO - Base IO Address of Model 250

Sets the TMS320C25 into operation.

hlt320(BASEIO)
BASEIO - Base IO Address of Model 250

Resets the TMS320C25, halting its operation.

sendio(X, LENGTH, START, BASEIO, PROGRAM_OR_DATA, DATA_BANK)
X - Array of 16 bit words
LENGTH - Number of words in array X to peek
START - Source start address in TMS320C25 memory
BASEIO - Base IO Address of Model 250
PROGRAM_OR_DATA = 0 for DATA MAEMORY access

= 1 for PROGRAM MEMORY access
DATA_BANK - Bank of Data Memory being accessed

= 0 for Bank 0
= 1 for Bank 1

Copies the array X into Model 250 memory starting at memory
location START.

Example
C Language:

sendio(pgm1, 0x88, 0, baseio,1,0);
/* copy 88h words from array pgm1 into Program RAM

starting at location 0 */

Link Package 7.^N

recvio(X, LENGTH, START, BASEIO, PROGRAM_OR_DATA, DATA_BANK)
X - Array of 16 bit words
LENGTH - Number of words in array X to peek
START - Source start address in TMS320C25 memory
BASEIO - Base IO Address of Model 250
PROGRAM_OR_DATA = 0 for DATA MEMORY access

= 1 for PROGRAM MEMORY access
DATA_BANK - Bank of Data Memory being accessed

= 0 for Bank 0
= 1 for Bank 1

Copies LENGTH words of Model 250 memory starting at START into
array X.

Example
C Language:

recvio(&x,0x300,0x1000,baseio,0,0);
/* copy 300h words from Data Ram Location 1000h

into array x */

NOTE: See the FFTP250.C and other listings on the diskette for
examples of the use of the Link Package functions.

Link Package 7.^N

8. A/D CONVERTER and D/A CONVERTER

A. A/D Converter

Data
Type : Maxim 162 or equivalent
Maximum Rate : 250 Khz
Input Voltage Range : +/- 5 Volts

Operation
The Analog to Digital conversion is a two step process from the
software or high level point of view. The ADC resides at Port 2 in
the TMS320C25’s IO space.

First, STEP 1, the ADC must be told to begin the conversion. This
is done by bringing the R/C pi n (C for convert) low. This strobe
can be generated by the output of the onboard Timer. See Section
4.A.

Step 2 : The ADC announces that it has completed the conversion by
generating an INT1 interrupt to the TMS320C25. Upon its reception
the TMS320C25 branches to a section of code where it can now input
the result, eg.

in 6,2

inputs the result to Data Memory location 6

A/D Converter and D/A Converter 8.^N

B. D/A Converter

Data
Type : PMI 8222 or equivalent
Rate : 250 Khz +
Output Voltage Range : +/- 5 Volts

Operation
The D/A Converter is mapped as Write Port 3 in the TMS320C25’s IO
space. Output of a value to Port 3 will result in the D/A converter
producing the corresponding voltage at its output at the next
arrival of the clock strobe from the programmable timer. Since
there are two D/A channels, the desired channel is selected by
first writing the appropriate value to bit 3 of the Latch Port
(Port 1). Both channel outputs will be simultaneously updated by
the Timer strobe. Make sure that the Timer is running.

Desired Output Voltage | Value | D325 Instruction
- 5 Volts | 0 | o0,3

. | . | .
0 Volts | 800 | o800,3

. | . | .
4.9976 Volts | FFF | oFFF,3

See the distribution diskette for programming examples involving
the A/D and D/A converters.

A/D Converter and D/A Converter 8.^N

9. FFT ROUTINES

The FFT routines are labelled:

FFT024.B25 : 1024 point complex
FFT512.B25 : 512 point complex
FFT256.B25 : 256 point complex

and are all identical with the exception of length dependent items
such as the sine table and one constant.

In each case the real values are loaded in at 200H and the
imaginary values are loaded in at 600H. Thus locations 200H thru
9FFH are reserved for input.

The results of the FFT replace the input.

Example: a ’manual’ FFT in D325.

- rfft024.b25<cr> ; load program
Start Address ? 0 <cr>
End Address ? FFF <cr>

- ; input data using
; f,s,m commands
; or load in from a

;file with r command
- g <cr> ; Start TMS320C25
- h ; Stop
- dp200,9ff <cr> ; look at results

The FFT routine outputs STARTING and COMPLETED words to the
Register. (See the example in the section which describes Polling).
This is to inform the host PC as to what the TMS320C25 is doing.

Example: FFT in a user’s program.

If you program in C, see the FFTP250.C file on the distribution
diskette. This program is also on your disk in executable form.
A Color, EGA, or VGA Adapter is required.

FFT Routines 9.^N1

10. DISPLAY PROGRAM- Time and Frequency Domain Display

Displays input signals on the Color Graphics, Hercules, or EGA/VGA
Graphics Adapters. This program enables the PC screen to function
as a signal display and as a Frequency Spectrum domain display with
sample rates ranging to 200 Khz. This program is only useful with
Model 250 boards equipped with the on-board A/D converter.

1) Type DISPLAY <cr>
2) DISPLAY will ask you for the IO addressing of the Model 250
board.

Example
IO Address Base ? 300 <cr>
Note that the answers are hexadecimal numbers.

3) Connect a signal source to the INPUT connector. Make sure the
signal does not exceed +/- 5 Volts with respect to the ground level
of the PC.
4) The signal should appear on the screen.

The Numeric Keypad on the right hand side of the PC keyboard
controls the operation of the DISPLAY program.

<-- and --> decrease and increase the sample rate, respectively.
CNTRL <-- and CNTRL --> halve and double the sample rate,
respectively.
UP ARROWand DOWN ARROWcontrol the ’gain’ of the display.
P activates the display Trigger feature, much like the ’Trigger
Level’ control on an oscillosope.

The Function Keys [F1-F8] are used for input channel selection.

To display the frequency spectrum domain, enter SPACE BAR.

To exit DISPLAY, enter Q.

DISPLAY Program 10.^N

11. DATA TRANSFER

A. RECORD - Model 250 to PC Transfer

This program transfers continuous data from the A/D Converter to
the host PC’s hard disk. The maximum amount of data which may be
recorded is dictated by the remaining free space on the disk. The
maximum direct-to-disk sampling rate depends upon the computer and
type of hard disk used. Recording rates of 50 Khz are typical on
AT-class computers.
The RECORD program prompts the user for the following data:

1.IO addressing of the Model 250.
2.Sample Rate
3.Disk file name (for writing)

B. PLAYBACK - PC to Model 250 Transfer

This program transfers data from the PC’s hard disk to the Model
250 for output to the D/A converter. The program prompts for the
following data:

1.IO addressing of the Model 250.
2.Sample Rate
3.Disk file name (for reading)

You may connect the Model 250 to a stereo by connecting the
preamp’s Tape Out output (which would ordinarily go to a tape deck)
to the top input connector (Channel 5 on the A/D converter) on the
Model 250. The output from the D/A 0 on the Model 250 can be
connected to the Tape or Tuner input on the preamp. You will
probably need BNC to Phono jack adapters (available in most
electronic/stereo stores).

Notes on Data Transfer 11.^N

C. EDIT25 Program

This program enables the user to view captured data files on the
Graphics computer screen. EDIT25 can scroll through a file, play
and loop segments through the D/A converter, and create and import
file sections. Additional features include file editing, cut and
paste, and mixing functions.

Enter <?> for the command list.

D. DELAY Program

The Delay program demonstrates how a digital delay may be
implemented using the Model 250. This early version of Delay
requires that a RAM DISK be configured on the host computer. The
DOS manual explains how this is done. The size of the RAM DISK
should be at least

4 * (Number of seconds of desired delay * sampling rate) bytes.

For example, a 10 Khz sampling rate wit h a 2 second delay would
require a RAM DISK with at least 80K bytes of free space.

Notes on Data Transfer 11.^N

12. DIGITAL FILTER IMPLEMENTATION

One popular use for the TMS320C25 is in the implementation of
digital filters. The TI publication Digital Signal Processing
Applications with the TMS320 Family is a good reference on the
subject.

Refer to the listings of the Length-80 Linear-Phase Passband FIR
Filter (Appendix A) in Chapter 3 of the Applications book. This is
a 1 Khz to 4 Khz bandpass filter.
You will note that there are two different listings of the same
program. The one listing is designed for the TMS32010, and can be
run, with only slight modification, on second generation TMS320
DSPs as well. The other listing is for the TMS32020 and TMS320C25
only, as it makes use of the larger Data Memory space and expanded
instruction capability of these devices.

The listings in the Applications book must be modified slightly to
run on the Model 250. The steps taken to modify these programs have
to do with the conversion of data from the format of the A/D and
D/A converters to the twos complement format which is used in the
actual filter calculations.

1) Modify the statements which convert the data from the
hardware’s format to two’s complement. These statements
immediately follow the IN instruction.

Replace:
lac XN with lac XN,4
xor MASK1 sub ONE,15

2) Modify the statements which convert the data from two’s
complement to the hardware’s format. These statements
immediately precede the OUT instruction.

Replace:
lac MASK2 with lac YN,12
xor YN addh MASK

where MASK equ 800h

Digital Filter Implementation 12.^N

3) The port numbers in the IN and OUT instructions are of course
hardware specific. The input port value (the A/D Converter) on the
Model 250 is 2. The output port (the D/A Converter) value is 3.

The modified program (FIR250.ASM) is on your disk.

Examine FIR250.ASM with your text editor, and run the program by
typing

A320 FIR250<cr>

at the DOS prompt. You will need to modify the listing FIR250.ASM
if you are not using the default Base IO value.

GEN250 CODE GENERATOR

GEN250 is a digital filter code generator which produces FIR filter
code for the Model 250. In this way, filter responses may be viewed
and studied minutes after their design.

GEN250 takes its input filter specifications from a file or
interactively from the user console. The input filter
specifications format consists of headings, each followed by its
relevant data (if applicable).

The heading categories are:

coefficients : followed by the filter coefficients, each
: appearing on a new line. The maximum number
: of coefficients is 120.

rate : followed by the sampling rate, in Hz.
quantize_C : followed by the number of bits for

: quantization (usually 16).
normalize_ON : one of these is selected. The default is
normalize_OFF : OFF.
end : end of filter specification.

Normalize_ON would be used in the case, for example,in a smoothing
formula where you wanted GEN250 to normalize the coefficient
values. Thus, after specifying:

Digital Filter Implementation 12.^N

-3
12
17
12
-3

as your coefficient values, GEN250 would
divide these numbers by their sum (35).

In most cases, including those where the coefficients have been set
by a filter design program, use normalize_OFF .

quantize_C indicates the number of bits used to represent the
filter coefficient values. Currently the only allowed option is 16
bits.

The Output of GEN250 is a TMS320C25 source code file which may
be assembled and run with A320. An iobase statement will have to be
added to the source file in cases where a base IO address other
than the default value of 300h is used.

Example 1 : Interactive Session

>GEN250 OutCodeFile.asm
rate
10000.
coefficients
-3/35
12/35
17/35
12/35
-3/35
quantize_C
16
normalize_OFF
end

If a heading is entered incorrectly, GEN250 will take the entered
string to be a variable and will display a number or ’syntax
error’. In this case, reenter the heading name correctly.

Digital Filter Implementation 12.^N

Example 2 : Using an Input Specification File

>GEN250 <InputFilterSpec OutCodeFile.asm

This is useful in cases where there are many coefficients or where
the coefficients have been produced by a filter design program.

Example of an Input Filter Specification File:

rate
2000
coefficients

.

.

.
quantize_C
16
normalize_OFF
end

An example of such a file is the INSPEC.SPC file on the
distribution diskette. Its coefficients were created with the
MACPARK program (see below).

In many filter design programs the coefficient list is produced as
an output file. This list (it should be a list of floating point
numbers in the range [-1.0 to 1.0]) may be inserted under the
coefficients heading in your Input Specification File.

One very useful FIR design program is EQFIR, which is described and
listed in Reference 1, Section 5.1. For those who don’t want to
type the entire listing into their computers, the program is
available on DOS disk (for a small fee) as MACPARK (Disk #2090 from
Sector Systems (617) 639-2625). Reference 1 is required for an
understanding of the program, and is a worthwhile investment for
the many other DSP programs it contains.

Digital Filter Implementation 12.^N

Most, if not all, of the commercial filter design programs, which
feature a more intuitive user interface than EQFIR/MACPARK, also
output coefficients in a form which can be readily used by GEN250.

Reference

1. Programs for Digital Signal Processing, IEEE Press.

Digital Filter Implementation 12.^N

APPENDIX A

MODEL 250 IO PORT ASSIGNMENTS
Port | Read | Write |

0 | Interrupt Ack | Program Timer |
1 | Interrupt PC | Latch Port |
2 | A/D Converter | |
3 | | D/A Converter |
4 | | |
5 | | |
6 | | |
7 | | |

HOST PC IO ASSIGNMENTS

Port value = IO Base + Offset

Offset | Read | Write |
0 | RAM access (word) |
1 | |
2 | | RAM address (w) |
3 | | |
4 | Int. Acknowledge (b) | Allow Int. (b) |
5 | Interrupt TMS320 (b) | Disallow Int. (b) |
6 | Set TMS320 (b) | |
7 | Reset TMS320 (b) | |

External Module A.^N

APPENDIX B

TMS320C25 Assembly Language

The detailed reference on this subject is the TMS320C25 User’s
Guide . Please refer to this publication for detailed programming
information.

TMS32010 Compatible Instructions

1. Accumulator Instructions
ABS - Absolute value of accumulator
ADD - Add to accumulator with shift
ADDH - Add to upper word in accumulator
ADDS - Add to accumulator no sign extension
AND - AND with accumulator
LAC - Load accumulator with shift
LACK - Load acc. immediate
OR - OR with acc.
SACH - Store upper word acc. with shift
SACL - Store lower word acc.
SUB - Subtract from acc. with shift
SUBC - Conditional subtract for division
SUBH - Subtract from upper word acc.
SUBS - Subtract from acc. with no sign extension
XOR - XOR with acc.
ZAC - Zero acc.
ZALH - Zero acc. and load upper word
ZALS - Zero acc. and load lower word w. no sign

extension.

2. Auxiliary Register and Data Page Instructions
LAR - Load auxiliary register
LARK - Load auxiliary register immediate
LARP - Load auxiliary reg. pointer immediate
LDP - Load Data memory page pointer
LDPK - Load Data memory page ptr immediate
MAR - Modify aux. register and pointer
SAR - Store auxiliary register

Assembly Language B.^N1

3. Branch Instructions
B - Branch unconditionally
BANZ - Branch on aux. register not zero
BGEZ - Branch if acc. .GE. zero
BGZ - Branch if acc. .GT. zero
BIOZ - Branch on BIO interrupt
BLEZ - Branch if acc. .LE. zero
BLZ - Branch if acc. .LT. zero
BNZ - Branch if acc. .NE. zero
BV - Branch on overflow
BZ - Branch if acc. .EQ. zero
CALA - Call Subroutine from accumulator
CALL - Call Subroutine immediate
RET - Return from Subroutine or Interrupt

Handler

3. T Register, P Register, Multiply Instructions.
APAC - Add P register to acc.
LT - Load T reister
LTA - LT and APAC in one instruction
LTD - LT, APAC, DMOV in one instruction
MPY - Multiply T reg, result in P register
MPYK - Multiply T reg immediate, result in P reg.
PAC - Load accumulator from P register
SPAC - Subtract P register from accumulator

4. Control Instructions
DINT - Disable interrupt
EINT - Enable interrupt
LST - Load status register
NOP - No op
POP - Pop stack to accumulator
PUSH - Push stack from accumulator
ROVM - Reset overflow mode
SOVM - Set overflow mode
SST - Store status register

5. I/O and Data Memory Instructions
DMOV - Contents of Dmem[i] --> Dmem[i+1]
IN - Input Data from Port
OUT - Output Data to Port
TBLR - Table read from Program to Data ram
TBLW - Table write from Data to Program ram

Assembly Language B.^N

Additional, Non-TMS32010 Instructions

6. Accumulator Memory Reference Instructions
ADDC - Add to accumulator with carry
ADDK - Add to accumulator short immediate
ADDT - Add to acc. w. shift specified by T Register
ADLK - Add to accumulator long immediate
ANDK - And immediate w. accumulator with shift
CMPL - Complement accumulator
LACT - Load acc w. shift specified by T Register
LALK - Load accumulator long immediate w. shift
NEG - Negate accumulator
NORM - Normalize accumulator
ORK - Or immediate with accumulator with shift
ROL - Rotate accumulator left
ROR - Rotate accumulator right
SBLK - Subtract from acc. long immed. w. shift
SFL - Shift accumulator left
SFR - Shift accumulator right
SUBB - Subtract from accumulator w. borrow
SUBT - Subtract from acc. shift spec. by T register
SUBK - Subtract from acc. short immediate
XORK - Exclusive Or immed. w. acc. w. shift
ZALR - Zero low acc., load hi acc w. rounding

7. Auxiliary Registers and Data Pointer Instructions
ADRK - Add to auxiliary register short immed.
CMPR - Compare auxiliary register with AR0
LRLK - Load auxiliary register long immediate
SBRK - Subtract from aux. register short immed.

8. T Register, P Register, and Multiply Instructions
LPH - Load high P register
LTP - Load T register and store P register in acc.
LTS - Load T register and subtract previous product
MAC - Multiply and accumulate
MACD - Multiply and accumulate with data move
MPYA - Multiply and accumulate previous product
MPYS - Multiply and subtract previous product
MPYU - Multiply unsigned
SPH - Store high P register
SPL - Store low P register
SPM - Set P register output shift mode
SQRA - Square and accumulate
SQRS - Square and subtract previous product

Assembly Language B.^N

9. Branch and Call Instructions
BACC - Branch to address specified by accumulator
BBNZ - Branch if TC bit .NE. 0
BBZ - Branch if TC bit .EQ. 0
BC - Branch on carry
BNC - Branch on no carry
BNV - Branch if no overflow

10. IO and Data Memory Operations
BLKD - Block move data memory to data memory
BLKP - Block move program memory to data memory
FORT - Format serial port registers
RFSM - Reset serial port frame synchronization mode
RTXM - Reset serial port transmit mode
RXF - Reset external flag
SFSM - Set serial port synchronization mode
STXM - Set serial port transmit mode
SXF - Set external flag

11. Control Instructions
BIT - Test bit
BITT - Test bit specified by T register
CNFD - Configure block as data memory
CNFP - Configure block as program memory
IDLE - Idle until interrupt
LST1 - Load status ST1
POPD - Pop top of stack to data memory
PSHD - Push data memory value to stack
RC - Reset carry bit
RPT - Repeat instruction as spec. by data mem value
RPTK - Repeat instruction as spec. by immed. value
RSXM - Reset sign extension mode
RTC - Reset test/control flag
SC - Set carry bit
SHM - Set hold mode
SST1 - Store status ST1
SSXM - Set sign extension mode
STC - Set test/control flag
TRAP - Software interrupt

Assembly Language B.^N

REFERENCES

1.TMS320C25 User’s Guide , Reference no. SPRUOO12A
2.TMS320 Development Support Reference Guide, Ref no. SPRU007A
3.Digital Signal Processing Applications with the TMS320 Family,

Ref no. SPRA012

References R.^N

